
Magnitude Simba SDK

Build a C# ODBC Driver for SQL-Capable Data Sources in 5
Days (Windows)
Version 10.2.2
October 2022



Copyright

This document was released in October 2022.

Copyright ©2014–2022 Magnitude Software, Inc., an insightsoftware company. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written
permission from Magnitude, Inc.

The information in this document is subject to change without notice. Magnitude, Inc. strives to keep this
information accurate but does not warrant that this document is error-free.

Any Magnitude product described herein is licensed exclusively subject to the conditions set forth in
your Magnitude license agreement.

Simba, the Simba logo, SimbaEngine, and Simba Technologies are registered trademarks of Simba
Technologies Inc. in Canada, the United States and/or other countries. All other trademarks and/or
servicemarks are the property of their respective owners.

All other company and product names mentioned herein are used for identification purposes only and
may be trademarks or registered trademarks of their respective owners.

Information about the third-party products is contained in a third-party-licenses.txt file that is packaged
with the software.

Contact Us

Magnitude Software, Inc.

www.magnitude.com

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
2

http://www.simba.com/
http://www.magnitude.com/


About this Guide

Purpose

This guide explains how to use the Magnitude Simba SDK to create a custom ODBC
connector for a data store that is SQL-aware. It explains how to customize the
UltraLight sample connector, which is included with the Simba SDK.

Using this sample connector is the quickest and easiest way to create a custom ODBC
connector. At the end of five days, you will have a read-only connector that connects to
your data store. This custom ODBC connector can be used as the foundation for a
commercial DSI implementation.

Note:

An online version of this guide is located at
http://www.simba.com/resources/sdk/documentation.

Advantages of Using the Simba SDK

The ODBC specification defines a rich interface that allows any ODBC-enabled
application to connect to a data store. In order to implement a connector that supports
this specification, developers have to understand all the complexities of error
checking, session management, and data conversion, then design their code in a
robust and efficient manner. Developers must also understand how to optimize data
retrieval in order to get maximum performance when connecting to large and complex
data stores.

The Simba SDK, developed by experts in the field, is a complete implementation of the
ODBC specification. It exposes an easy-to-use SDK that allows you to create a robust
and efficient connector for your data store.

Build a Custom ODBC Connector in Five Days

Over the course of five days, this guide explains how to accomplish the following
tasks:

1. Set up the development environment and build the sample connector.
2. Use the sample connector as a template to create a custom ODBC connector.
3. Make a connection to the data store.
4. Retrieve metadata.
5. Work with columns.

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
3

About this Guide

http://www.simba.com/resources/sdk/documentation
http://www.magnitude.com/


6. Retrieve data.
7. Rename and rebrand the custom ODBC connector.

In the UltraLight connector, the areas of code that require modification are marked with
“TODO” messages and a short explanation. Some of these changes customize the
connector for your specific data store, while other changes rename the connector for
your company or product.

Audience

The guide is intended for developers who want to use the Simba SDK to build a
connector for a data store that is SQL-aware.

Document Conventions

Italics are used when referring to book and document titles.

Bold is used in procedures for graphical user interface elements that a user clicks and
text that a user types.

Monospace font indicates commands, source code or contents of text files.

NOTE:

Indicates a short note appended to a paragraph.

IMPORTANT:

Indicates an important comment related to the preceding paragraph.

Knowledge Prerequisites

To use the Simba SDK to build a custom ODBC connector, the following knowledge is
helpful:

l Familiarity with the C# programming language.
l Ability to use the data store to which the connector you are developing will
connect.

l An understanding of the role of ODBC technologies and driver managers in
connecting to a data store.

l Exposure to SQL.

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
4

About this Guide

http://www.magnitude.com/


Variables Used in this Document

The following variables are used in this document:

Variable Description

[INSTALL_DIR]

Installation directory for the SimbaEngine X SDK.

Default value on Windows platforms: C:\Simba
Technologies\SimbaEngineSDK\10.2

Default value on Linux, Unix, and macOS platforms: [UNTAR_
DIR]/SimbaEngineSDK/10.2

[PROJ_NAME] The name of your own sample project (which is also the
name of your project directory).

[DRIVER_NAME] The name of your own driver.

[UNTAR_DIR]
Directory where the SimbaEngine X SDK distributable was
untarred.

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
5

About this Guide

http://www.magnitude.com/


Introduction

This guide will show you how to create your own, custom ODBC driver using the
SimbaEngine SDK. It will walk you through the steps to modify and customize the
included DotNetQuickstart sample driver. At the end of five days, you will have a read-
only driver that connects to your data store.

About the SimbaEngine X SDK

The SimbaEngine X SDK is a complete implementation of the ODBC 3.80
specification, which provides a standard interface to which any ODBC-enabled
application can connect. ODBC is one the most established and widely supported
APIs for connecting to and working with databases. At the heart of the technology is
the ODBC driver, which connects an application to the database. For more information
about ODBC, see http://www.simba.com/odbc.htm. For complete information on the
ODBC specification, see the MSDN ODBC Programmer's Reference, available from
the Microsoft web site at http://msdn.microsoft.com/en-us/library/ms714562
(VS.85).aspx

The libraries of the SimbaEngine X SDK hide the complexity of error checking, session
management, data conversions and other low-level implementation details. They
expose a simple API, called the Data Store Interface API or DSI API, which defines the
operations needed to access a data store. Full documentation for the SimbaEngine X
SDK is available on the Simba website at http://www.simba.com/odbc-sdk-
documents.htm.

You use the SimbaEngine X SDK to create a file that will be accessed by common
reporting applications and to access your data store when SimbaEngine executes an
SQL statement. You create a custom-designed DSI implementation (DSII) that
connects directly to your data source. Then, you create the executable by linking
libraries from SimbaEngine X SDK with the DSI implementation that you have written. 
In the process, the project files or make files will link in the appropriate SimbaODBC
and SimbaEngine libraries to complete the driver.  In the final executable, the
components from SimbaEngine X SDK take responsibility for meeting the data access
standards while your custom DSI implementation takes responsibility for accessing
your data store and translating it to the DSI API.

About the UltraLight sample driver

The UltraLight driver is a sample DSI implementation of an ODBC driver, written in C#,
which reads files that are in tabbed Unicode text format.  Because text files are not a
SQL-capable data source, the Simba SQLEngine component must be used to perform
the necessary SQL processing. 

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
6

Introduction

http://www.simba.com/odbc.htm
http://msdn.microsoft.com/en-us/library/ms714562(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms714562(VS.85).aspx
http://www.simba.com/odbc-sdk-documents.htm
http://www.simba.com/odbc-sdk-documents.htm
http://www.magnitude.com/


The UltraLight driver helps you to prototype a DSI implementation for your own data
store so you can learn how the SimbaEngine X SDK works. You can also use it as the
foundation for your commercial DSI implementation if you are careful to remove the
shortcuts and simplifications that it contains. This is a fast and effective way to get a
data access solution to your customers. 

A typical design pattern for a DSI implementation is shown in the following UML
diagram.

Figure 1: Design pattern for a DSI implementation.

There is a circular pattern of class relationships, headed by IResult and anchored by
QSUtilities. The IResult class is responsible for retrieving column data and maintaining

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
7

Introduction

http://www.magnitude.com/


a cursor across result rows and the QSUtilities class contains a collection of utility
functions that are used by the DSI.

To implement data retrieval, your Reader class interacts directly with your data store to
retrieve the data and deliver it to the QSTable class on demand.  The Reader class
should take care of caching, buffering, paging, and all the other techniques that speed
data access. 

Overview

The series of steps to take to get a prototype DSI implementation working with your
data store is as follows:

1. Set up the development environment
2. Make a connection to the data store
3. Retrieve metadata
4. Work with columns
5. Retrieve data

In the UltraLightdriver, the areas of the code that you need to change are marked with
“TODO” messages along with a short explanatory message. Most of the areas of the
code that you need to modify are for driver customization, rather than connecting to
the Simba SQL engine. These are tasks such as naming the driver, setting the
properties that configure the driver, and naming the log files. The other areas of the
code that you will modify are related to getting the data and metadata from your data
store into the Simba SQLEngine. Since the UltraLightdriver already has the classes
and code to do this against the example data store, all you have to do is modify the
existing code to make your driver work against your own data store. 

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
8

Introduction

http://www.magnitude.com/


Day One

Today's task is to set up the development environment and project files for your driver.
By the end of the day, you will have compiled and tested your first ODBC driver.

Install the SimbaEngine X SDK

NOTE: If you have a previous version of the SimbaEngine X SDK installed,
uninstall it before installing the new one.

1. If Visual Studio is running, close it.
2. Run the SimbaEngine X SDK setup executable that corresponds to your version

of Visual Studio and follow the installer’s instructions.

IMPORTANT: The SimbaEngine X SDK environment variables are
defined only for the user that ran the installation. If you install the SDK as
a regular user and then run Visual Studio as an administrator, the SDK
will not work properly.

Build the UltraLight example driver

NOTE: Visual Studio 2013 is used for the examples, but Visual Studio 2015 is
also supported.

1. Launch Microsoft Visual Studio.
2. Click File > Open > Project/Solution.
3. Navigate to

[INSTALLDIR]
\SimbaEngineSDK\10.0\Examples\Source\DotNet
ultralight\Source and then open the ultralight_Driver_
vs2013.sln file.
The default [INSTALLDIR] is C:\Simba Technologies.

The solution contains two projects: UltraLight_Driver_vs2013, which is the C#
driver implementation, and UltraLightCLIDSI, which is the driver’s native
component (C++ CLI) and is the ODBC driver. Every .NET ODBC driver built
using the SimbaEngine X SDK will have these two components, one managed
and one native. The native component (in this case UltraLightCLIDSI) has only

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
9

Day One

http://www.magnitude.com/


one function, to create an instance of the .NET driver object from the
implementation.

4. Click Build > Configuration Manager and make sure that the active solution
configuration is Debug_MTDLL and then click Close.

5. Click Build > Build Solution or press F7 to build the driver.

Install the assembly into the Global Assembly Cache

Each time you build the DLL, it must be installed to the Global Assembly Cache (GAC)
before it can be used.  To run the Global Assembly Cache tool, use the Visual Studio
Command Prompt. You must run this command as an administrator.

1. On the taskbar, click Start > All Programs > Microsoft Visual Studio > Visual
Studio Tools.

2. Right-click Visual Studio Command Prompt and select Run as administrator.

NOTE: Visual Studio 2013 has different command prompts for different
targets which are named accordingly (e.g. VS2013 x64 Cross Tools
Command Prompt). Choose the command prompt which corresponds to
your target.

3. Change to the directory that contains the DLL file. Enter a command using the
following examples:

l For 32-bit drivers: cd
[INSTALLDIR]
\SimbaEngineSDK\10.0\Examples\Source\DotNet
ultralight\Bin\Win32\Debug_MTDLL

l Or for 64-bit drivers: cd
[INSTALLDIR]
\SimbaEngineSDK\10.0\Examples\Source\DotNet
ultralight\Bin\x64\Debug_MTDLL

4. Type the following command to install the assembly into the GAC:
gacutil.exe /i Simba.UltraLight.Driver.dll
gacutil.exe /i QuickstartConfigDialog.dll

You will see the message, Assembly successfully added to the cache if the
operation was successful.

5. In addition to the DLL of your driver, Simba.DotNetDSI.dll and
Simba.DotNetDSIExt.dll have to be installed in the GAC.  These files were
installed in the GAC during SDK installation.  In order to check for these
assemblies in the GAC run the following commands:

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
10

Day One

http://www.magnitude.com/


gacutil.exe /l Simba.DotNetDSI
gacutil.exe /l Simba.DotNetDSIExt

NOTE: If an assembly is already installed in the GAC, then it must be
uninstalled from GAC before installing it again.  To remove an assembly,
run the following command (as administrator):
gacutil.exe /u <assembly_display_name>

Examine the registry keys added by the SimbaEngine X SDK installer

The SimbaEngine X SDK installer automatically added or updated the following
registry keys that define Data Source Names (DSNs) and driver locations:

l ODBC Data Sources - lists each DSN/driver pair
l UltraLightDSII - defines the Data Source Name (DSN). Used by the ODBC
Driver Manager to connect your driver to your database.

l ODBC Drivers - lists the drivers that are installed
l UltraLightDSIIDriver - defines the driver and its setup location. The ODBC
Driver Manager uses this key.

To view the registry keys, do the following:

1. Run regedit.exe.
2. To view the registry keys that are related to Data Source Names, expand the

folders in the Registry Editor to the following location:
l For 32-bit drivers on 32-bit Windows and 64-bit drivers on 64-bit
Windows:HKEY_LOCAL_MACHINE/SOFTWARE/ODBC/ODBC.INI

l Or for 32-bit drivers on 64-bit Windows: HKEY_LOCAL_
MACHINE/SOFTWARE/WOW6432NODE/ODBC/ODBC.INI

3. To view the registry keys that are related to ODBC drivers, expand the folders in
the Registry Editor to the following location:  

l For 32-bit drivers on 32-bit Windows and 64-bit drivers on 64-bit
Windows:HKEY_LOCAL_MACHINE/SOFTWARE/ODBC/ODBCINST.INI

l Or for 32-bit drivers on 64-bit Windows: HKEY_LOCAL_
MACHINE/SOFTWARE/WOW6432NODE/ODBC/ODBCINST.INI

Your custom driver installer will eventually have to create similar registry keys.

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
11

Day One

http://www.magnitude.com/


NOTE: Registry keys for 32-bit and 64-bit ODBC drivers are installed in
different areas of the Windows registry. See Windows Registry 32-Bit vs.
64-Bit on page 33.

View the data source in the ODBC Data Source Administrator

1. Run the Windows ODBC Data Source Administrator:

For 32-bit drivers on 32-bit Windows and 64-bit drivers on 64-bit Windows, click
Start > Control Panel > Administrative Tools > Data Sources (ODBC).  If your
Control Panel is set to view by category, then Administrative Tools is located
under System and Security.

For 32-bit drivers on 64-bit Windows (other than Windows 8), you must use the
32-bit ODBC Data Source Administrator. You cannot access the 32-bit ODBC
Data Source Administrator from the start menu or control panel on 64-bit
Windows. Only the 64-bit ODBC Data Source Administrator is accessible from
the start menu or control panel. On 64-bit Windows, to launch the 32-bit ODBC
Data Source Administrator you must run
%WINDIR%\SysWOW64\odbcad32.exe. See32-Bit Drivers on 64-Bit
Windows on page 34.

2. In the ODBC Data Source Administrator, click the System DSN tab.
3. Scroll through the list of System Data Sources, select DotNetUltraLightDSII and

then click Configure.

The Data Source Configuration window opens and displays the data source
name, description and the data directory.

4. Now that you have looked at the configuration information for the driver, click
Cancel to close the Data Source Configuration window.

Test the data source

To test the data source that we have created, you can use any ODBC application,
such as, for example, Microsoft Excel, Microsoft Access or ODBCTest. In this section,
we will use the ODBC Test tool, which is available in the Microsoft Data Access
(MDAC) 2.8 Software Development Kit (SDK). To download the SDK, visit the
following Microsoft Web site:
http://www.microsoft.com/downloads/details.aspx?FamilyID=5067faf8-0db4-429a-
b502-de4329c8c850&displaylang=en

1. Start the ODBC Test tool. By default, the ODBC Test application is installed in
the following folder: C:\Program Files (x86)\Microsoft Data Access

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
12

Day One

http://www.microsoft.com/downloads/details.aspx?FamilyID=5067faf8-0db4-429a-b502-de4329c8c850&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=5067faf8-0db4-429a-b502-de4329c8c850&displaylang=en
http://www.magnitude.com/


SDK 2.8\Tools\

2. Navigate to the folder that corresponds to your driver’s architecture (amd64, ia64
or x86).

3. Choose one of the following:
l To launch the ANSI version click odbcte32.exe, or
l Or to launch the Unicode version, click odbct32w.exe.

NOTE: It is important to run the correct version of the ODBC Test tool for
ANSI or Unicode and 32-bit or 64-bit.

4. In the ODBC Test tool, select Conn > Full Connect.
The Full Connect window opens.

5. Select the UltraLightDSII Data Source from the list of data sources and then
click OK.
If you do not see your data source in the list, make sure that you are running the
version of the ODBC Test tool that corresponds to the version of the data source
that you created. In other words, if you created a 32-bit data source then you
should be using the 32-bit version of the ODBC Test tool.

6. When the tool connects to the data source, you will see the message,
Successfully connected to DSN 'DotNetultralightDSII'.

Set up a new project to build your own ODBC driver

Now that you have built the example driver, you are ready to set up a development
project to build your own ODBC driver.

NOTE: It is very important that you create your own project directory. You
might be tempted to just modify the sample project files but we strongly
recommend against this, because when you install a new release of the SDK,
changes you make will be lost and there may be times, for debugging
purposes, that you will need to see if the same error occurs using the sample
drivers.  If you have modified the sample drivers, this will not be possible.

To rename the project:

1. In your Windows Explorer window, copy the
[INSTALLDIR]\SimbaEngineSDK\10.0\Examples\Source\DotNet
ultralight directory and paste it to the same location. This will create a new
directory called DotNetUltraLight - Copy.  Rename the directory to something
that is meaningful to you. This will be the top-level directory for your new project
and DSI implementation files. For the rest of this tutorial, when you see

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
13

Day One

http://www.magnitude.com/


<YourProjectName> in the instructions, replace this with the name you choose
for this directory which is also the name of your project.

2. Open the Source directory and then right-click the ultralight_Driver_vs2013.sln
file.

3. Select Open with > Microsoft Visual Studio Version Selector.
4. In the Microsoft Visual Studio menu, click View > Solution Explorer.
5. Using the Solution Explorer, rename the following items:

l Rename the UltraLight_Driver_vs2013 solution to <YourProjectName>_
Driver_VS2013.

l Rename the C# project ultralight_Driver_vs2013 to
<YourProjectName>_Driver_VS2013.

l Rename ultralightCLIDSI to <YourProjectName>CLIDSI.

For example, if your project name was AceData, your solution might look like
this:

6. Right click on <YourProjectName>_Driver_VS2013 and select properties.
7. In the Assembly name text box, replace Simba.UltraLight.Driver with

<YourProjectName>Driver.
8. Click File > Save All.

Your project is renamed, but you still need to update the namespaces.

To update the namespaces:

To update the namespaces you must remove and re-add the references, because the
references are not automatically updated when the projects are renamed.

1. Right click on <YourProjectName>CLIDSI and select Properties.
2. Select Common Properties > References, select <YourProjectName>_

VS2013, then select Remove Reference.

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
14

Day One

http://www.magnitude.com/


3. Select Add New Reference, select the reference you just removed,
(<YourProjectName>_VS2013), and select OK. For example, if your project
was named AceData, you would do the following steps:

4. Select OK to return to the Solution Explorer.
5. Click File > Save All.

You can now rebuild your renamed project.

Build your new driver

1. Click Build > Configuration Manager and make sure that the active solution
configuration is Debug_MTDLL and then click Close.

2. Click Build > Build Solution or press F7 to build the driver.

Update the Global Assembly Cache

Each time you build the DLL, it must be installed to the Global Assembly Cache (GAC).

1. On the taskbar, click Start > All Programs > Microsoft Visual Studio > Visual
Studio Tools.

2. Right-click Visual Studio Command Prompt and select Run as administrator.

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
15

Day One

http://www.magnitude.com/


NOTE: Visual Studio 2013 has different command prompts for different
targets which are named accordingly (e.g. VS2013 x64 Cross Tools
Command Prompt). Choose the command prompt which corresponds to
your target.

3. Change to the directory that contains the DLL file. Type a command using one of
the following examples:

l For 32-bit drivers: cd
[INSTALLDIR]
\SimbaEngineSDK\10.0\Examples\Source\
<YourProjectName>\Bin\Win32\Debug_MTDLL

l Or for 64-bit drivers: cd
[INSTALLDIR]
\SimbaEngineSDK\10.0\Examples\Source\
<YourProjectName>\Bin\x64\Debug_MTDLL

4. Type the following commands to install the assemblies into the GAC:
gacutil.exe /i <YourProjectName>.Driver.dll
gacutil.exe /i <YourProjectName>ConfigDialog.dll

NOTE: If you have renamed this DLL, you need to reinstall it.

You will see the message, Assembly successfully added to the cache if the
operation was successful.

NOTE: If your driver is already installed in the GAC, then it must be
uninstalled from GAC before installing it again.  Run the following
command (as administrator):
gacutil.exe /u <YourProjectName>DSII

Update the registry

To update the registry keys, do the following:

1. In Microsoft Visual Studio, click File > Open > File and navigate to
[INSTALLDIR]\SimbaEngineSDK\10.0\Examples\Source\<YourProj
ectName>\Source.

2. Choose one of the following: 
l For 32-bit Windows, open SetupMyDotNetUltraLightDSII_32on32.reg.
l For a 32-bit ODBC driver on 64-bit Windows, open
SetupMyDotNetUltraLightDSII_32on64.reg.

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
16

Day One

http://www.magnitude.com/


l For a 64-bit ODBC driver on 64-bit Windows, open
SetupMyDotNetUltraLightDSII_64on64.reg.

3. In the file, replace [INSTALLDIR] with the path to the installation directory. In the
path, you must enter double backslashes. For example, by default, the samples
are installed to C:\Simba Technologies so in that case, you would replace
all instances of [INSTALLDIR] with C:\\Simba Technologies.

4. Update the ODBC Data Sources section to add your new data source. Under the
[HKEY_LOCAL_MACHINE\...\ODBC Data Sources] section, change
"MyDotNetultralightDSII"="MyDotNetultralightDSIIDriver" to the name of your
new data source and new driver. For example,
"<YourProjectName>DSII"="<YourProjectName>DSIIDriver"

5. Modify the data source definition for that data source. Change the line that says
[HKEY_LOCAL_MACHINE\...\ODBC.INI\MyDotNetultralighttDSII] so that it
contains your new data source name. For example, [HKEY_LOCAL_
MACHINE\...\ODBC.INI\<YourProjectName>DSII]

6. Beside the line that starts with "Driver"= enter the path to the driver dll file.
7. Update the ODBC Drivers section to add your new driver. Under the [HKEY_

LOCAL_MACHINE\...\ODBCINST.INI\ODBC Drivers] section, change
"MyDotNetultralightDSIIDriver"="Installed" to match the name of your new
driver. For example, "<YourProjectName>DSIIDriver"="Installed"

8. Modify the driver definition for that driver. Change the line that says [HKEY_
LOCAL_MACHINE\...\ODBCINST.INI\MyDotNetultralightDSIIDriver] so that it
contains your new driver name. For example, [HKEY_LOCAL_
MACHINE\...\ODBCINST.INI\<YourProjectName>DSIIDriver]

9. Beside the line that starts with Driver, update the path to the DLL file.

Note:

This is not the same DLL file that was added to the Global Assembly
Cache (GAC).

10. Click Edit > Find and Replace > Quick Replace. Then, replace DotNetultralight
in the whole file with the name of your new ODBC driver.

11. Click Save and then close the file.
12. In the Registry Editor (regedit.exe), click File > Import, navigate to the registry

file that you just modified and then click Open.
A message is displayed that says that the keys and values have been
successfully added to the registry.

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
17

Day One

http://www.magnitude.com/


View your new data source in the ODBC Data Source Administrator

1. Run the Windows ODBC Data Source Administrator.

For 32-bit drivers on 32-bit Windows and 64-bit drivers on 64-bit Windows, click
Control Panel > Administrative Tools > Data Sources (ODBC).  If your Control
Panel is set to view by category, then Administrative Tools is located under
System and Security.

For 32-bit drivers on 64-bit Windows (other than Windows 8), you must use the
32-bit ODBC Data Source Administrator. You cannot access the 32-bit ODBC
Data Source Administrator from the start menu or control panel on 64-bit
Windows. Only the 64-bit ODBC Data Source Administrator is accessible from
the start menu or control panel.  On 64-bit Windows, to launch the 32-bit ODBC
Data Source Administrator you must run
%WINDIR%\SysWOW64\odbcad32.exe. See 32-Bit Drivers on 32-Bit Windows
on page 33 .

2. In the ODBC Data Source Administrator, click the System DSN tab.
3. Scroll through the list of System Data Sources, select <YourProjectName>DSII.
4. Now that you have located your new driver, click Cancel to close the Data

Source Configuration window.

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
18

Day One

http://www.magnitude.com/


Test your new data source

1. Start the ODBC Test tool. By default, the ODBC Test application is installed in
the following folder: C:\Program Files (x86)\Microsoft Data Access
SDK 2.8\Tools\

2. Navigate to the folder that corresponds to your driver’s architecture (amd64, ia64
or x86) and then click odbcte32.exe to launch the ANSI version or click
odbct32w.exe to launch the Unicode version. It is important to run the correct
version of the ODBC Test tool for ANSI or Unicode and 32-bit or 64-bit.

3. Attach Visual Studio to the ODBC Test process.  To do this, go to Microsoft
Visual Studio and then click Debug > Attach to Process

4. In the Attach to Process window, verify that the Attach to field is set to both
Managed (v4.5, v4.0) Code and Native Code. In the list of available processes,
select the ODBC Test process and then click Attach. The process name will be
either odbc32.exe or odbct32w.exe.

5. Add a breakpoint on the ULConnection.cs constructor.  This code runs as soon
as the Driver Manager loads the ODBC driver. 

6. In the ODBC Test tool, select Conn > Full Connect.
The Full Connect window opens.

7. Select your Data Source from the list of data sources and then click OK.
If you do not see your data source in the list, make sure that you are running the
version of the ODBC Test tool that corresponds to the version of the data source
that you created. In other words, if you created a 32-bit data source then you
should be using the 32-bit version of the ODBC Test tool.

8. You should hit the breakpoint you created and focus should switch to Visual
Studio. 

9. To continue running the program, select Debug > Continue.
The focus returns to the ODBC Test window.

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
19

Day One

http://www.magnitude.com/


Day Two

Today's goal is to customize your driver, enable logging and establish a connection to
your data store.  Several “TODO” comments appear in the source code. They instruct
you how to modify the sample driver.

View the list of TODO messages

1. Go to Microsoft Visual Studio and then click Edit > Find and Replace > Find in
Files.

2. In the Find and Replace window, in the Find what text box, type TODO and then
click Find All.
The results are displayed in the Find Results output window.

3. Double-click the entry in the Find Results window to jump to that line in the code.
The list of TODOmessages is as follows:

l TODO #1: Construct driver singleton (ultralightCLIDSI.cpp).
l TODO #2: Set the driver properties (ULDriver.cs).
l TODO #3: Check connection settings (ULConnection.cs).
l TODO #4: Establish a connection (ULConnection.cs).
l TODO #5: Create and return your Metadata Sources (ULDataEngine.cs).
l TODO #6: Prepare a query (ULDataEngine.cs).
l TODO #7: Implement a QueryExecutor (ULQueryExecutor.cs).
l TODO #8: Provide parameter information (ULQueryExecutor.cs).
l TODO #9: Implement Query Execution (ULQueryExecutor.cs).
l TODO #10: Implement your DSISimpleResultSet (ULPersonTable.cs).
l TODO #11: Set the vendor name, which will be prepended to error
messages (ULDriver.cs).

Construct a driver singleton

TODO #1: Construct driver singleton

The LoadDriver() implementation in ultralightCLIDSI.cpp in the
ultralightCLIDSI project is the main hook that is called from Simba’s ODBC layer
to create an instance of your DSI implementation.  Note that the UltraLightCLIDSI
library is a C++ CLI library and is therefore able to construct an instance of a managed
class. This method is called as soon as the Driver Manager calls LoadLibrary() on
your ODBC driver. 

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
20

Day Two

http://www.magnitude.com/


1. In Microsoft Visual Studio, open the file that contains the TODO #1 message.
2. Look at the LoadDriver() implementation and replace Simba with your

company name and change UltraLightto the name of your driver in the following
line:

SimbaSettingReader.SetConfigurationBranding
("Simba\\DotNetultralight");

SetConfigurationBranding changes the registry location that will be used
when reading driver settings from the registry. By default, it looks in
HKLM\SOFTWARE[\Wow6432Node]\Simba\Driver for a driver, where the
Wow6432Node section is used for a 32-bit driver on a 64-bit windows machine.
When you change the branding by using a string such as Company\Driver,
then it will look in HKLM\SOFTWARE[\Wow6432Node]\Company\Driver. This
is where the ErrorMessagesPath and other required registry settings will be
placed. The \Driver or \Server suffix is added depending on configuration.

3. If the driver is running as a server (SERVERTARGET is defined) then you can
update the service name from SimbaDotNetultralightService to the
name of your new service.

4. You may want to add processing at this point if you are building a commercial
driver. 

5. Click Save.

Set the driver properties

TODO #2: Set the driver properties

1. Double click the TODO #2 message to jump to the relevant section of code.
The ULDriver.cs file opens. Look at SetDriverPropertyValues() where
you will set up the general properties for your driver. The available driver
properties are defined in the DriverPropertyKey enum.

2. Change the DSI_DRIVER_DRIVER_NAME setting. Set this to the name of your
driver.

NOTE: You may want to revisit this section when fully productizing your driver.

Check the connection settings

TODO #3: Check Connection Settings

When the Simba ODBC layer is given a connection string from an ODBC-enabled
application, the Simba ODBC layer parses the connection string into key-value pairs.
Then, the entries in the connection string and the DSN are sent to the

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
21

Day Two

http://www.magnitude.com/


ULConnection.UpdateConnectionSettings()method which is responsible for
verifying that all of the required, and any optional, connection settings are present.

The entries from the DSN are only included if a DSN is specified in the connection
string instead of a Driver or if the ODBC connection method explicitly uses the DSN.

For example, the connection string DSN=UltraLight;UID=user will be broken
down into key value pairs and passed in via the connectionSettings parameter. In this
case that dictionary would contain two entries: {DSN, UltraLight} and {UID,
user}. If a DSN was specified, then the DSN value is removed from the map and any
entries that are stored in the preconfigured DSN are inserted into the map. Once the
map has been created with all the key-value pairs from the connection string and DSN,
this map is passed down to the DSII.

1. Double click the TODO #3 message to jump to the relevant section of code.
2. The UpdateConnectionSettings()method should validate that the key-

value pairs in requestSettings are sufficient to create a connection. Use the
VerifyRequiredSetting() or VerifyOptionalSetting() utility
methods to do this.

For example, the driver verifies that the entries within requestSettings are
sufficient to create a connection, by using the following code: 
VerifyRequiredSetting(UltraLight.UL_UID_KEY,
requestSettings, responseSettings);
VerifyRequiredSetting(UltraLight.UL_PWD_KEY,
requestSettings, responseSettings);
VerifyOptionalSetting(UltraLight.UL_LNG_KEY,
requestSettings, responseSettings);

The example driver requires connection keys for the user name and password to use
for connecting, while the language can optionally be specified.

Note that settings can alternatively be verified manually. If the entries within
requestSettings are not sufficient to create a connection, then you can ask for
additional information from the ODBC-enabled application by manually specifying, in
the responseSettings return value, the additional information required.

Use the DriverPrompt Dialog to get settings

Depending on how the connection was initiated by the application, the SDK may call
ULConnection.PromptDialog() to allow the user to specify more information. In
general, if there are any required settings present in responseSettings, then
PromptDialog() will be called. Note that, if the application requests,
PromptDialog()may not be called in this case or may be called even if there are no
settings in responseSettings.

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
22

Day Two

http://www.magnitude.com/


ULConnection.PromptDialog()displays a configuration dialog box which is
displayed by the Windows ODBC Data Source Administrator when configuring the
driver. 

The method takes in the following:

l connResponseMap: a connection response map which can be populated with
settings which haven’t been entered by the user. This is then used by the driver
to notify the user that information is missing. Currently this variable is unused in
the sample.

l connectionSettings: a connection settings map which is populated by the dialog
with settings entered by the user.

l parentWindow: the handle to the parent Window to make the prompt window a
child of.

l promptType: an enum specifying if only required fields are to be available, or if
optional fields should be available as well.

The dialog and the related code in this method can be modified to take in different
parameters as required by your driver.

Establish a connection

TODO #4: Establish A Connection

Once ULConnection.UpdateConnectionSettings() returns a Dictionary
<string, ConnectionSetting> object without any required settings (if there are
only optional settings, a connection can still occur), the Simba ODBC layer will call
ULConnection.Connect() passing in all the connection settings received from the
application.

During Connect(), you should have all the settings necessary to make a connection
as verified by UpdateConnectionSettings(). You can use the utility functions
GetRequiredSetting() and GetOptionalSetting() to request the required
and optional settings for your connection, and attempt to make an actual connection.

1. Double click the TODO #4 message to jump to the relevant section of code.
2. Modify the code to authenticate the user against your data store using the

information provided within the requestSettings parameter.  The sample
code uses the utility method GetRequiredSetting() to retrieve the
appropriate settings. GetRequiredSetting() fetches a required setting from
the passed in settings, and will throw an authorization exception if the setting is
not present. Another method that can be used is GetOptionalSetting() will
fetch an optional setting from the passed in settings and will not throw an

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
23

Day Two

http://www.magnitude.com/


exception if the setting is not present. These can be used to fetch the settings
passed in to create a full connection to the underlying data-source.

You have now authenticated the user against your data store.

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
24

Day Two

http://www.magnitude.com/


Day Three

Today’s goal is to return the data used to pass catalog information back to the ODBC-
enabled application.  Almost all ODBC-enabled applications require at least the
following ODBC catalog functions:

l SQLGetTypeInfo
l SQLTables (CATALOG_ONLY)
l SQLTables (SCHEMA_ONLY)
l SQLTables (TABLE_TYPE_ONLY)
l SQLTables
l SQLColumns

These catalog functions are represented in the DSI by metadata sources, one for each
of the catalog functions.

Create and return metadata sources

TODO #5: Create and return your Metadata Sources

ULDataEngine.MakeNewMetadataSource() is responsible for creating the
sources to be used to return data to the ODBC-enabled application for the various
ODBC catalog functions.  Each ODBC catalog function is mapped to a unique
MetadataSourceID, which is then mapped to an underlying IMetadataSource that you
will implement and return.  Each IMetadataSource instance is responsible for the
following:

l Creating a data structure that holds the data relevant for your data store: 
Constructor

l Navigating the structure on a row-by-row basis:  MoveToNextRow()
l Retrieving data:  GetMetadata() (See the section, Data Retrieval on page 37,
for a brief overview of data retrieval). Each column in the metadata source will be
represented by a MetadataSourceColumnTag which is passed into
GetMetadata().

Handle DSI_TYPE_INFO_METADATA

The underlying ODBC catalog function SQLGetTypeInfo is handled as follows:

1. When called with DSI_TYPE_INFO_METADATA,
ULDataEngine.MakeNewMetadataSource() will return an instance of
ULTypeInfoMetadataSource().

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
25

Day Three

http://www.magnitude.com/


2. The example driver exposes support for all data types, but due to its underlying
file format, it is constrained to support only the following types:

SQL_BIT SQL_CHAR SQL_INTEGER

SQL_
LONGVARCHAR

SQL_
LONGWVARCHAR SQL_NUMERIC

SQL_REAL SQL_SMALLINT SQL_TINYINT

SQL_TYPE_DATE SQL_TYPE_TIME SQL_TYPE_
TIMESTAMP

SQL_VARCHAR SQL_WCHAR SQL_WVARCHAR

3. For your driver, you may need to change the types returned and the parameters
for the types in ULTypeInfoMetadataSource.InitializeDataTypes().

Handle the other MetadataSources

The other ODBC catalog functions (including SQLTables (CATALOG_ONLY),
SQLTables (TABLE_TYPE_ONLY), SQLTables (SCHEMA_ONLY), SQLTables
and SQLColumns) are handled as follows:

1. When called with the corresponding metatable ID’s,
ULDataEngine.MakeNewMetadataSource() returns a new instance of one
of the following respective DSIMetadataSource-derived classes:

l ULCatalogOnlyMetadataSource: returns a list of all catalogs. The
sample implementation returns one row of information with one column
containing the name of a fake catalog. This demonstrates how to return a
catalog name.

l DSITableTypeOnlyMetadataSource: (default implementation by
Simba) returns metadata about all tables of a particular type (TABLE,
SYSTEM TABLE, and VIEW) in the datasource. This class provides two
constructors which allow for returning the default set of table types (listed
above) or for specifying your own set of table types.

l ULSchemaOnlyMetadataSource: returns a list of all schemas. The
sample implementation returns one row of information with one column
containing the name of a fake schema. This demonstrates how to return a
schema name.

l ULTablesMetadataSource: returns metadata about all of the tables in
the data source. The sample hard codes and returns information for the
hard coded person table to demonstrate how to return table metadata.

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
26

Day Three

http://www.magnitude.com/


l ULColumnsMetadataSource: returns metadata for the columns in the
data source. The sample hard codes and returns information for the three
columns in the person table consisting of the name column, an integer
column, and a numeric column.

2. When called with any other MetadataSourceID, which doesn’t correspond to
these tables, ULDataEngine.MakeNewMetadataSource() returns a new
instance of DSIEmptyMetadataSource to indicate that no metadata is
available for the specified table ID.

You can now retrieve type metadata from within your data store. 

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
27

Day Three

http://www.magnitude.com/


Day Four

Today’s goal is to enable data retrieval from within the driver.  We will cover the
process of preparing a query, providing parameter information, implementing a query
executor, and implementing a result set.

TODO #6: Prepare a query (ULDataEngine.cs)

The ULDataEngine.Prepare()method takes in a query and is expected to pass it
to the underlying SQL enabled datasource for preparation. Once prepared, the method
then returns a ULQueryExecutor which is used by the engine to return results.

For demonstration purposes, the default implementation of
ULDataEngine.Prepare() performs a very simple preparation by searching for the
substrings select and ? in the query. If select is found, then it is assumed that the
caller wants to search for rows of data and a result set is therefore returned. If select
is not found, then it is assumed that the caller wants to retrieve the number of rows and
so a row count is therefore returned. If ? is present, then the statement is assumed to
be parameterized and therefore ULQueryExecutor’s constructor will populate
parameters as described below.

The method also checks the query for the string “{call” and if found, throws an
exception. This demonstrates how to throw an error when parsing a query.

In your implementation you would replace this with more sophisticated logic or pass
the query to the data source for preparation.

TODO #7: Implement a QueryExecutor (ULQueryExecutor.cs)

The ULQueryExecutor object returned by the ULDataEngine.Prepare()method
is an implementation of IQueryExecutor which, as the name suggests, executes a
query. The implementation of ULQueryExecutor simply checks if the query passed
in contains a select statement or not by looking at the isSelect parameter. If
isSelect is set then the constructor creates and adds a simple result set consisting
of people’s names to Results. Otherwise, it creates and adds a row count.

Modify the implementation to query the data source and store the results.

TODO #8: Provide parameter information (ULQueryExecutor.cs)

ULExecutorUtilities.CreateParameters() is called by the
ULQueryExecutor constructor and handles any parameter information specified
when the application calls SQLPrepare. The default implementation shows how to
register input, input/output, and output-only parameters. Modify this method as
required to register parameters appropriate for your queries.

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
28

Day Four

http://www.magnitude.com/


Note that this method’s logic will only be executed if the query contains a parameter
and if the hosting application doesn’t set SQL_ATTR_ENABLE_AUTO_IPD to false.

TODO #9: Implement Query Execution (ULQueryExecutor.cs)

The next step is to handle statement execution in ULQueryExecutor.Execute(). 
The sample delegates this to ULExecutorUtilities.ExecuteParameters()
which iterates through the input and copies it to the output for consumption by the
calling application.

In your implementation, the Execute()method should begin by serializing
parameters (stored in the Inputs field of the contexts parameter) into a form that the
data source can consume. Once this has been done then the data source should then
be instructed to execute the statement, after which the results should be placed into
the Outputs field of the contexts parameter.

After this method exits, the calling framework will then obtain the results by accessing
the ULQueryExecutor.Results property.

TODO #10: Implement your DSISimpleResultSet

The final step in returning data is to implement a DSISimpleResultSet. The sample
contains an implementation called ULPersonTable which returns a hardcoded set of
people’s names.

A DSISimpleResultSet implementation contains the data result from a query
execution, which the calling framework will use to access each row and column of
data.

The implementation should maintain a handle to a cursor within the SQL-enabled data
source and delegate calls to the data source to move to the next row when the
MoveToNextRow()method is called.

In the example, ULPersonTable.MoveToNextRow() simply returns whether or not
the driver is on the last row of data, so this should be replaced in your implementation
with code that delegates this to the data source.

The GetData()method is where column data is retrieved, so this should also be
modified to extract data from the data source.

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
29

Day Four

http://www.magnitude.com/


Day Five

Today’s goal is to start productizing your driver.

Configure error messages

All the error messages used within your DSI implementation are stored in the resource
file called Resource.resx. 

1. Open the Resource.resx file. It is located within the Properties folder in
Solution Explorer.

2. Update the error messages. Then save and close the file.

Set the vendor name

TODO #11: Set the vendor name, which will be prepended to error messages.

The vendor name is prepended to all error messages that are visible to applications.
The default vendor name is Simba. To set the vendor name:

1. Double click the TODO #11 message to jump to the relevant section of code.
2. Set the vendor name as shown in the commented code.

Finishing Touches

Create a driver configuration dialog

The driver configuration dialog is displayed to the user when they use the ODBC Data
Source Administrator to create a new ODBC DSN or configure an existing one.  The
project contains an example ODBC configuration dialog. 

If you create your own configuration dialog, then the Setup key in the driver registry
entry under odbcinst.ini needs to point to the binary containing the dialog and you
need to put the C# assembly into the GAC.

To see the driver configuration dialog that you created, run the ODBC Data Source
Administrator. Control Panel > Administrative Tools > Data Sources (ODBC).  If
your Control Panel is set to view by category, then Administrative Tools is located
under System and Security.

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
30

Day Five

http://www.magnitude.com/


IMPORTANT: If you are using 64-bit Windows with 32-bit applications, you
must use the 32-bit ODBC Data Source Administrator. You cannot access the
32-bit ODBC Data Source Administrator from the start menu or control panel in
64-bit Windows (other than on Windows 8). Only the 64-bit ODBC Data Source
Administrator is accessible from the start menu or control panel.  On 64-bit
Windows, to launch the 32-bit ODBC Data Source Administrator you must run
%WINDIR%\SysWOW64\odbcad32.exe. See ODBC Data Source
Administrator on Windows 32-Bit vs. 64-Bit on page 32 for details.

You are now done with all of the TODO’s in the project.  You have created your own,
custom ODBC driver using the SimbaEngine X SDK by modifying and customizing the
DotNetQuickstart sample driver. Now, you have a read-only driver that connects to
your data store. 

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
31

Day Five

http://www.magnitude.com/


ODBC Data Source Administrator on Windows 32-Bit vs. 64-
Bit

On a 64-bit Windows system, you can execute 64-bit and 32-bit applications
transparently.  Microsoft Excel 2010 is one of the few applications to be available in
both 64-bit and 32-bit versions, so it is highly likely that you will encounter 32-bit
applications running on 64-bit systems.

It is important to understand that 64-bit applications can only load 64-bit drivers and
32-bit applications can only load 32-bit drivers. In a single running process, all of the
code must be either 64-bit or 32-bit. 

On a 64-bit Windows system, the ODBC Data Source Administrator that you access
through the Control Panel can only be used to configure data sources for 64-bit
applications. However, the 32-bit version of the ODBC Data Source Administrator
must be used to configure data sources for 32-bit applications. This is the source of
many confusing problems where what appears to be a perfectly configured ODBC
DSN does not work because it is loading the wrong kind of driver.

To create new or modify existing 32-bit data sources on 64-bit Windows you must run
C:\WINDOWS\SysWOW64\odbcad32.exe (you may find it useful to put a shortcut to
this on your desktop or Start menu if you access it frequently).

Because of this, it is very important, when using 64-bit Windows, that you configure
32-bit and 64-bit drivers using the correct version of the ODBC Data Source
Administrator for each.

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
32

ODBC Data Source Administrator on Windows 32-Bit vs. 64-Bit

http://www.magnitude.com/


Windows Registry 32-Bit vs. 64-Bit

As noted previously, the 32-bit and 64-bit drivers must remain clearly separated
because they must match the architecture of the applications that are using them. The
32-bit and 64-bit ODBC drivers are installed and data source names are created in
different areas of the registry.

32-Bit Drivers on 32-Bit Windows

The Data Source Names and Driver Locations that are relevant to the C# examples for
this document are detailed below.

Data Source Names

To connect your driver to your database, the 32-bit ODBC Driver Manager on 32-bit
Windows uses Data Source Name registry keys in HKEY_LOCAL_
MACHINE/SOFTWARE/ODBC/ODBC.INI. The default [INSTALLDIR] is C:\Simba
Technologies.

Each key includes string values to define the name of the Driver, a Description to help
you clearly identify each registry key, and a Locale to specify the language.  The keys
that are relevant to the C# examples discussed in this document are:

l DotNetUltraLightDSII which includes the following key names and values:
l Driver:  DotNetUltraLightDSIIDriver
l Description:  Sample 32-bit SimbaEngine DotNetUltraLight DSII
l Locale:  en-US

There is another registry key at the same location called ODBC Data Sources. 
String values that correspond to each DSN/driver pair must also be added to it:

l ODBC Data Sources which includes the following key name and value:
l DotNetUltraLightDSII: DotNetUltraLightDSIIDriver

Driver Locations

To define each driver and its setup location, the 32-bit ODBC Driver Manager on 32-bit
Windows uses registry keys created in HKEY_LOCAL_
MACHINE/SOFTWARE/ODBC/ODBCINST.INI.  Each key includes string values to
define the location of the Driver and a Description to help you clearly identify the
registry key.  The keys that are relevant to the C# examples discussed in this
document are:

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
33

Windows Registry 32-Bit vs. 64-Bit

http://www.magnitude.com/


l DotNetUltraLightDSIIDriver which includes the following key names and
values:

l Driver: 
[INSTALLDIR]
\SimbaEngineSDK\10.0\Examples\Builds\Bin\Win32\Release_
MTDLL\UltraLightCLIDSI_MTDLL.dll

l Description:  Sample 32-bit SimbaEngine DotNetUltraLight DSII

There is another registry key at the same location called ODBC Drivers,
indicating which drivers are installed.  String values that correspond to each
driver must also be added to it:

l ODBC Drivers which includes the following key name and value:

DotNetUltraLightDSIIDriver:  Installed

32-Bit Drivers on 64-Bit Windows

The 32-bit applications and drivers use a section of the registry that is separate from
the 64-bit applications and drivers.  Note that from the point of view of a 32-bit
application on a 64-bit machine, 32-bit data sources look exactly like they do on a 32-
bit machine.

Data Source Names

To connect your driver to your database, the 32-bit ODBC Driver Manager on 64-bit
Windows uses Data Source Name registry keys in HKEY_LOCAL_
MACHINE/SOFTWARE/WOW6432NODE/ODBC/ODBC.INI. Each key includes string
values to define the name of the Driver, a Description to help you clearly identify the
registry key, and a Locale to specify the language.  The keys that are relevant to the
C# examples discussed in this document are:

l DotNetUltraLightDSII which includes the following key names and values:
l Driver: DotNetUltraLightDSIIDriver
l Description:  Sample 32-bit SimbaEngine DotNetUltraLight DSII
l Locale:  en-US

There is another registry key at the same location called ODBC Data Sources. 
String values that correspond to each DSN/driver pair must also be added to it:

l ODBC Data Sources which includes the following key name and value:
l DotNetUltraLightDSII:  DotNetUltraLightDSIIDriver

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
34

Windows Registry 32-Bit vs. 64-Bit

http://www.magnitude.com/


Driver Locations

To define each driver and its setup location, the 32-bit ODBC Driver Manager on 64-bit
Windows uses registry keys created in HKEY_LOCAL_
MACHINE/SOFTWARE/WOW6432NODE/ODBC/ODBCINST.INI.  Each key includes
three string values to define the location of the Driver, and a Description to help you
clearly identify the registry key.  The keys that are relevant to the C# examples
discussed in this document are:

l DotNetUltraLightDSIIDriver which includes the following key names and
values:

l Driver: 
[INSTALLDIR]
\SimbaEngineSDK\10.0\Examples\Builds\Bin\Win32\Release_
MTDLL\UltraLightCLIDSI_MTDLL.dll

l Description:  Sample 32-bit SimbaEngine DotNetUltraLight DSII

There is another registry key at the same location called ODBC Drivers,
indicating which drivers are installed.  String values that correspond to each
driver must also be added to it:

l ODBC Drivers which includes the following key name and value:
l DotNetUltraLightDSIIDriver:  Installed

64-Bit Drivers on 64-Bit Windows

The Data Source Names and Driver Locations that are relevant to the C# examples for
this document are detailed below.

Data Source Names

To connect your driver to your database, the 64-bit ODBC Driver Manager on 64-bit
Windows uses Data Source Name registry keys in HKEY_LOCAL_
MACHINE/SOFTWARE/ODBC/ODBC.INI. Each key includes string values to define
the name of the Driver, a Description to help you clearly identify each registry key, and
a Locale to specify the language. The keys that are relevant to the examples
discussed in this document are:

l DotNetUltraLightDSII which includes the following key names and values:
l Driver:  DotNetUltraLightlDSIIDriver
l Description:  Sample 64-bit SimbaEngine DotNetUltraLight DSII
l Locale: en-US

There is another registry key at the same location called ODBC Data Sources. 
String values that correspond to each DSN/driver pair must also be added to it:

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
35

Windows Registry 32-Bit vs. 64-Bit

http://www.magnitude.com/


l ODBC Data Sources which includes the following key names and values:
l DotNetUltraLightDSII:  DotNetUltraLightDSIIDriver

Driver Locations

To define each driver and its setup location, the 64-bit ODBC Driver Manager on 64-bit
Windows uses registry keys created in HKEY_LOCAL_
MACHINE/SOFTWARE/ODBC/ODBCINST.INI.  Each key includes three string values
to define the location of the Driver and a Description to help you clearly identify the
registry key.  The keys that are relevant to the C# examples discussed in this
document are:

l DotNetUltraLightDSIIDriver which includes the following key names and
values:

l Driver: 
[INSTALLDIR]
\SimbaEngineSDK\10.0\Examples\Builds\Bin\x64\Release_
MTDLL\UltraLightCLIDSI_MTDLL.dll

l >Description:  Sample 64-bit SimbaEngine DotNetUltraLight DSII

There is another registry key at the same location called ODBC Drivers,
indicating which drivers are installed. String values that correspond to each
driver must also be added to it:

l ODBC Drivers which includes the following key name and value:
l DotNetUltraLightDSIIDriver:  Installed

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
36

Windows Registry 32-Bit vs. 64-Bit

http://www.magnitude.com/


Data Retrieval

In the Data Store Interface (DSI), the following two methods actually perform the task
of retrieving data from your data store:

1. Each MetadataSource implementation of GetMetadata()
2. DSISimpleResultSet::GetData()

These methods accept the following parameters:

l column: Uniquely identifies a column within the current row.  For
MetadataSource, the calling framework will pass in a unique column tag (see
MetadataSourceColumnTag).  For ULPersonTable, the calling framework will
pass in the column index. The first column uses index 0.

l offset: The number of bytes in the data to skip before copying data into the out_
data parameter. Character, wide character and binary data types can be
retrieved in parts.  This value specifies where, in the current column, the value
should be copied from.  The value is usually 0.

l maxSize: The maximum number of bytes of data to copy into the out_data
parameter.  For character or binary data, copying data that is greater than this
size can result in a data truncation warning or a heap-violation.

l out_data: The data to be returned.

NOTE: offset and maxSize are only applicable to data that can be retrieved in
multiple parts (for example, character or binary) and can be ignored otherwise.

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
37

Data Retrieval

http://www.magnitude.com/


Contact Us

For more information or help using this product, please contact our Technical Support
staff. We welcome your questions, comments, and feature requests.

Note:

To help us assist you, prior to contacting Technical Support please prepare a
detailed summary of the Simba SDK version and development platform that
you are using.

You can contact Technical Support via the Magnitude Support Community at
www.magnitude.com.

You can also follow us on Twitter @SimbaTech and@Mag_SW.

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
38

Contact Us

http://www.magnitude.com/
http://www.magnitude.com/


Third-Party Licenses

The licenses for the third-party libraries that are included in this product are listed
below.

OpenSSL

Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

All advertising materials mentioning features or use of this software must display the
following acknowledgment:

"This product includes software developed by the OpenSSL Project for use in the
OpenSSL Toolkit. (http://www.openssl.org/)"

The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or
promote products derived from this software without prior written permission. For
written permission, please contact openssl-core@openssl.org.

Products derived from this software may not be called "OpenSSL" nor may "OpenSSL"
appear in their names without prior written permission of the OpenSSL Project.

Redistributions of any form whatsoever must retain the following acknowledgment:

"This product includes software developed by the OpenSSL Project for use in the
OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT "AS IS" AND ANY
EXPRESSED OR IMPLIEDWARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIEDWARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL
PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
39

Third-Party Licenses

http://www.openssl.org/
http://www.openssl.org/
http://www.magnitude.com/


WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANYWAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim Hudson
(tjh@cryptsoft.com).

Expat

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUTWARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THEWARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NOINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTIONWITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

ICU License - ICU 1.8.1 and later

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1995-2014 International Business Machines Corporation and others

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, provided that the above copyright notice(s) and this
permission notice appear in all copies of the Software and that both the above
copyright notice(s) and this permission notice appear in supporting documentation.

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
40

Third-Party Licenses

http://www.magnitude.com/


THE SOFTWARE IS PROVIDED "AS IS", WITHOUTWARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THEWARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR
ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR
ANY DAMAGESWHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTIONWITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this Software
without prior written authorization of the copyright holder.

All trademarks and registered trademarks mentioned herein are the property of their
respective owners.

Stringencoders License

Copyright 2005, 2006, 2007

Nick Galbreath -- nickg [at] modp [dot] com

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

Neither the name of the modp.com nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIEDWARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIEDWARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
41

Third-Party Licenses

http://www.magnitude.com/


LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANYWAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

This is the standard "new" BSD license:

http://www.opensource.org/licenses/bsd-license.php

dtoa

The author of this software is David M. Gay.

Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

Permission to use, copy, modify, and distribute this software for any purpose without
fee is hereby granted, provided that this entire notice is included in all copies of any
software which is or includes a copy or modification of this software and in all copies of
the supporting documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
IMPLIEDWARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT
MAKES ANY REPRESENTATION ORWARRANTY OF ANY KIND CONCERNING
THE MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY
PARTICULAR PURPOSE.

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
42

Third-Party Licenses

http://www.opensource.org/licenses/bsd-license.php
http://www.magnitude.com/


Third-Party Trademarks

Simba, the Simba logo, Simba SDK, and Simba Technologies are registered
trademarks of Simba Technologies Inc. in Canada, United States and/or other
countries. All other trademarks and/or servicemarks are the property of their
respective owners.

Kerberos is a trademark of the Massachusetts Institute of Technology (MIT).

Linux is the registered trademark of Linus Torvalds in Canada, United States and/or
other countries.

Mac and macOS are trademarks or registered trademarks of Apple, Inc. or its
subsidiaries in Canada, United States and/or other countries.

Microsoft SQL Server, SQL Server, Microsoft, MSDN, Windows, Windows Azure,
Windows Server, Windows Vista, and the Windows start button are trademarks or
registered trademarks of Microsoft Corporation or its subsidiaries in Canada, United
States and/or other countries.

Red Hat, Red Hat Enterprise Linux, and CentOS are trademarks or registered
trademarks of Red Hat, Inc. or its subsidiaries in Canada, United States and/or other
countries.

Solaris is a registered trademark of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

SUSE is a trademark or registered trademark of SUSE LLC or its subsidiaries in
Canada, United States and/or other countries.

Ubuntu is a trademark or registered trademark of Canonical Ltd. or its subsidiaries in
Canada, United States and/or other countries.

All other trademarks are trademarks of their respective owners.

www.magnitude.com

©2021 Magnitude Software, Inc. All rights reserved.
43

Third-Party Trademarks

http://www.magnitude.com/

	About this Guide
	Introduction
	About the SimbaEngine X SDK
	About the UltraLight sample driver
	Overview

	Day One
	Install the SimbaEngine X SDK
	Build the UltraLight example driver
	Install the assembly into the Global Assembly Cache
	Examine the registry keys added by the SimbaEngine X SDK installer
	View the data source in the ODBC Data Source Administrator
	Test the data source
	Set up a new project to build your own ODBC driver
	Build your new driver
	Update the Global Assembly Cache
	Update the registry
	View your new data source in the ODBC Data Source Administrator
	Test your new data source

	Day Two
	View the list of TODO messages
	Construct a driver singleton
	Set the driver properties
	Check the connection settings
	Use the DriverPrompt Dialog to get settings
	Establish a connection

	Day Three
	Create and return metadata sources

	Day Four
	Day Five
	Configure error messages
	Set the vendor name
	Finishing Touches

	ODBC Data Source Administrator on Windows 32-Bit vs. 64-Bit
	Windows Registry 32-Bit vs. 64-Bit
	32-Bit Drivers on 32-Bit Windows
	32-Bit Drivers on 64-Bit Windows
	64-Bit Drivers on 64-Bit Windows

	Data Retrieval
	Contact Us
	Third-Party Licenses
	Third-Party Trademarks

